

Juniper

JN0-346 Exam

Enterprise Routing and Switching, Specialist (JNCIS-ENT)

Thank you for Downloading JN0-346 exam PDF Demo

You can Buy Latest JN0-346 Full Version Download

https://www.certkillers.net/Exam/JN0-346

Version: 8.0

Question: 1

A Exhibit				\boxtimes
user@switc	:h> show v	irtual-chassi	3	Ê
		d282.58c1.e2	ca	
Virtual Ch	assis Mod	e: Enabled	Mstr	
	Mixed Nei	ghbor List		
Member ID	Status	Serial No	Model prio	
Role	Mode ID	Interface		
0 (FPC 0)	Prsnt	PG3713430050	ex4300-24t 128	
Master*	NA 1	vcp-255/1/0		
		vcp-255/1/1		
			ex4300-24t 128	
Backup	NA O	vcp-255/1/0		
	0	vcp-255/1/1		
Member ID	for next	new member: 2	(FPC 2)	

Click the Exhibit button.

Given the information shown in the exhibit, what was used to determine mastership?

A. member uptime

B. manuallyassigned role

C. highest serial number

D. manually assigned priority

Answer: A

Explanation:

When a Virtual Chassis configuration boots, the Juniper Networks Junos operating system (Junos OS) on the switches automatically runs a master election algorithm to determine which member switch assumes the role of master.

The algorithm proceeds from the top condition downward until the stated condition is satisfied:

Question: 2

Which two statements are true about OSPF not-so-stubby areas? (Choose two.)

A. The ASBR originates Type 7 LSAafor redistributed external routes.

B. Type 5 LSAs are translated by the ASBR into Type 7 LSAs.

C. The ASBR originates Type 5 LSAs for redistributed external routes.

D. Type 7 LSAs are translated by the ABR into Type 5 LSAs.

Answer: A,D

Explanation:

Redistribution intoan NSSA area creates a special type of link-state advertisement (LSA) known as type 7, which can only exist in an NSSA area. An NSSA autonomous system boundary router (ASBR) generates this LSA and an NSSA area border router (ABR) translates it into a type5 LSA, which gets propagated into the OSPF domain.

References:http://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/6208-nssa

Question: 3

R1 (RID: 1.1.1.1)		R2 (RID: 1.1.1.2)			
R3 (RID: 1.1.1.	3)	29		R4 (RID:	1.1.1
user@R1> show	ospf neighbor				
Address	Interface	State	ID	Pri	Dead
	Interface ge-0/0/1.0	Full	1.1.1.4	128	31
Address 172.25.0.4 172.25.0.3	Interface ge-0/0/1.0 ge-0/0/1.0	Full Full	1.1.1.4 1.1.1.3	128 128	33
Address 172.25.0.4	Interface ge-0/0/1.0	Full	1.1.1.4	128	31
Address 172.25.0.4 172.25.0.3 172.25.0.2 user@R4> show	Interface ge-0/0/1.0 ge-0/0/1.0 ge-0/0/1.0 ospf neighbor	Full Full Full	1.1.1.4 1.1.1.3 1.1.1.2	128 128 254	3: 31 31
Address 172.25.0.4 172.25.0.3 172.25.0.2 user@R4> show Address	Interface ge-0/0/1.0 ge-0/0/1.0 ge-0/0/1.0 ospf neighbor Interface	Full Full Full State	1.1.1.4 1.1.1.3 1.1.1.2	128 128 254 Pri	33 31 31 Dead
Address 172.25.0.4 172.25.0.3 172.25.0.2 user@R4> show Address 172.25.0.1	Interface ge-0/0/1.0 ge-0/0/1.0 ge-0/0/1.0 ospf neighbor Interface ge-0/0/1.0	Full Full Full State Full	1.1.1.4 1.1.1.3 1.1.1.2 ID 1.1.1.1	128 128 254 Pri 255	33 31 38 Dead
Address 172.25.0.4 172.25.0.3 172.25.0.2 user@R4> show Address	Interface ge-0/0/1.0 ge-0/0/1.0 ge-0/0/1.0 ospf neighbor Interface	Full Full Full State	1.1.1.4 1.1.1.3 1.1.1.2	128 128 254 Pri	33 31 31 Dead

Click the Exhibit button. Referring to the exhibit, which statement is true?

A. R3 has the complete OSPF database.

- B. R3 and R4 have an adjacency state of Full.
- C. R4 is elected as the DR.
- D. R1 and R2 are elected as DROTHERs.

Answer: A,C

Explanation:

C: In LANs, the election of the designated router takes place when the OSPF network is initially

established. When the first OSPF links are active, the routing device with the highest router identifier (defined by the router-id configuration value, which is typically the IP address of the routing device, or the loopback address) is elected the designated router.

Question: 4

An EBGP session sources its TCP connection from which IP address?

- A. The IP address of the primary address assigned to the loopback interface.
- B. The IP address assigned as the router ID.
- C. The IP address of the preferred address assigned to the loopback interface.
- D. TheIP address of the interface that connects the two BGP speakers.

Answer: D

Explanation:

The BGP session between two BGP peers is said to be an external BGP (eBGP) session if the BGP peers are in different autonomous systems (AS). A BGP session between two BGP peers is said to be an internal BGP (iBGP) session if the BGP peers are in the same autonomous systems.

By default, the peer relationship is established using the IP address of the interface closest to the peer router.

References:http://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13751-23

Question: 5

You notice that there are currently two MAC addresses associated with a single access port in the bridge table on one of your EX Series switches.

What are two explanations for this behavior? (Choose two.)

A. The access port connects to an IP phone which connects to a host device.

- B. The native VLAN feature has been associated with the access port.
- C. Themac-move-limitfeature has been disabled on the access port.
- D. The access port connects to multiple hosts through a rogue device.

Answer: B,D

Explanation:

MAC move limiting detects MAC movement and MAC spoofing on access interfaces. You enable this feature on VLANs.

Page 4

Thank You for trying JN0-346 PDF Demo

To Buy Latest JN0-346 Full Version Download visit link below

https://www.certkillers.net/Exam/JN0-346

Start Your JN0-346 Preparation

[Limited Time Offer] Use Coupon "CKNET" for Further discount on your purchase. Test your JN0-346 preparation with actual exam questions.

https://www.certkillers.net